Source code for napari.layers.surface.surface

import warnings

import numpy as np

from ...utils.colormaps import AVAILABLE_COLORMAPS
from ...utils.events import Event
from ..base import Layer
from ..intensity_mixin import IntensityVisualizationMixin
from ..utils.layer_utils import calc_data_range


# Mixin must come before Layer
[docs]class Surface(IntensityVisualizationMixin, Layer): """ Surface layer renders meshes onto the canvas. Parameters ---------- data : 3-tuple of array The first element of the tuple is an (N, D) array of vertices of mesh triangles. The second is an (M, 3) array of int of indices of the mesh triangles. The third element is the (K0, ..., KL, N) array of values used to color vertices where the additional L dimensions are used to color the same mesh with different values. colormap : str, napari.utils.Colormap, tuple, dict Colormap to use for luminance images. If a string must be the name of a supported colormap from vispy or matplotlib. If a tuple the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict the key must be a string to assign as a name to a colormap and the value must be a Colormap. contrast_limits : list (2,) Color limits to be used for determining the colormap bounds for luminance images. If not passed is calculated as the min and max of the image. gamma : float Gamma correction for determining colormap linearity. Defaults to 1. name : str Name of the layer. metadata : dict Layer metadata. scale : tuple of float Scale factors for the layer. translate : tuple of float Translation values for the layer. rotate : float, 3-tuple of float, or n-D array. If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed. shear : 1-D array or n-D array Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal. affine : n-D array or napari.utils.transforms.Affine (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a lenght N translation vector and a 1 or a napari AffineTransform object. If provided then translate, scale, rotate, and shear values are ignored. opacity : float Opacity of the layer visual, between 0.0 and 1.0. blending : str One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {'opaque', 'translucent', and 'additive'}. visible : bool Whether the layer visual is currently being displayed. Attributes ---------- data : 3-tuple of array The first element of the tuple is an (N, D) array of vertices of mesh triangles. The second is an (M, 3) array of int of indices of the mesh triangles. The third element is the (K0, ..., KL, N) array of values used to color vertices where the additional L dimensions are used to color the same mesh with different values. vertices : (N, D) array Vertices of mesh triangles. faces : (M, 3) array of int Indices of mesh triangles. vertex_values : (K0, ..., KL, N) array Values used to color vertices. colormap : str, napari.utils.Colormap, tuple, dict Colormap to use for luminance images. If a string must be the name of a supported colormap from vispy or matplotlib. If a tuple the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict the key must be a string to assign as a name to a colormap and the value must be a Colormap. contrast_limits : list (2,) Color limits to be used for determining the colormap bounds for luminance images. If not passed is calculated as the min and max of the image. gamma : float Gamma correction for determining colormap linearity. Extended Summary ---------- _data_view : (M, 2) or (M, 3) array The coordinates of the vertices given the viewed dimensions. _view_faces : (P, 3) array The integer indices of the vertices that form the triangles in the currently viewed slice. _colorbar : array Colorbar for current colormap. """ _colormaps = AVAILABLE_COLORMAPS def __init__( self, data, *, colormap='gray', contrast_limits=None, gamma=1, name=None, metadata=None, scale=None, translate=None, rotate=None, shear=None, affine=None, opacity=1, blending='translucent', visible=True, ): ndim = data[0].shape[1] super().__init__( data, ndim, name=name, metadata=metadata, scale=scale, translate=translate, rotate=rotate, shear=shear, affine=affine, opacity=opacity, blending=blending, visible=visible, ) self.events.add(interpolation=Event, rendering=Event) # Set contrast_limits and colormaps self._gamma = gamma if contrast_limits is None: self._contrast_limits_range = calc_data_range(data[2]) else: self._contrast_limits_range = contrast_limits self._contrast_limits = tuple(self._contrast_limits_range) self.colormap = colormap self.contrast_limits = self._contrast_limits # Data containing vectors in the currently viewed slice self._data_view = np.zeros((0, self._ndisplay)) self._view_faces = np.zeros((0, 3)) self._view_vertex_values = [] # assign mesh data and establish default behavior self._vertices = data[0] self._faces = data[1] self._vertex_values = data[2] # Trigger generation of view slice and thumbnail self._update_dims() def _calc_data_range(self): return calc_data_range(self.vertex_values) @property def dtype(self): return self.vertex_values.dtype @property def data(self): return (self.vertices, self.faces, self.vertex_values) @property def vertices(self): return self._vertices @vertices.setter def vertices(self, vertices): """Array of vertices of mesh triangles.""" self._vertices = vertices self._update_dims() self.refresh() self.events.data(value=self.data) self._set_editable() @property def vertex_values(self) -> np.ndarray: return self._vertex_values @vertex_values.setter def vertex_values(self, vertex_values: np.ndarray): """Array of values used to color vertices..""" self._vertex_values = vertex_values self.refresh() self.events.data(value=self.data) self._set_editable() @property def faces(self) -> np.ndarray: return self._faces @faces.setter def faces(self, faces: np.ndarray): """Array of indices of mesh triangles..""" self.faces = faces self.refresh() self.events.data(value=self.data) self._set_editable() def _get_ndim(self): """Determine number of dimensions of the layer.""" return self.vertices.shape[1] + (self.vertex_values.ndim - 1) @property def _extent_data(self) -> np.ndarray: """Extent of layer in data coordinates. Returns ------- extent_data : array, shape (2, D) """ if len(self.vertices) == 0: extrema = np.full((2, self.ndim), np.nan) else: maxs = np.max(self.vertices, axis=0) mins = np.min(self.vertices, axis=0) # The full dimensionality and shape of the layer is determined by # the number of additional vertex value dimensions and the # dimensionality of the vertices themselves if self.vertex_values.ndim > 1: mins = [0] * (self.vertex_values.ndim - 1) + list(mins) maxs = list(self.vertex_values.shape[:-1]) + list(maxs) extrema = np.vstack([mins, maxs]) return extrema def _get_state(self): """Get dictionary of layer state. Returns ------- state : dict Dictionary of layer state. """ state = self._get_base_state() state.update( { 'colormap': self.colormap.name, 'contrast_limits': self.contrast_limits, 'gamma': self.gamma, 'data': self.data, } ) return state def _set_view_slice(self): """Sets the view given the indices to slice with.""" N, vertex_ndim = self.vertices.shape values_ndim = self.vertex_values.ndim - 1 # Take vertex_values dimensionality into account if more than one value # is provided per vertex. if values_ndim > 0: # Get indices for axes corresponding to values dimensions values_indices = self._slice_indices[:-vertex_ndim] values = self.vertex_values[values_indices] if values.ndim > 1: warnings.warn( """Assigning multiple values per vertex after slicing is not allowed. All dimensions corresponding to vertex_values must be non-displayed dimensions. Data will not be visible.""" ) self._data_view = np.zeros((0, self._ndisplay)) self._view_faces = np.zeros((0, 3)) self._view_vertex_values = [] return self._view_vertex_values = values # Determine which axes of the vertices data are being displayed # and not displayed, ignoring the additional dimensions # corresponding to the vertex_values. indices = np.array(self._slice_indices[-vertex_ndim:]) disp = [ d for d in np.subtract(self._dims_displayed, values_ndim) if d >= 0 ] not_disp = [ d for d in np.subtract(self._dims_not_displayed, values_ndim) if d >= 0 ] else: self._view_vertex_values = self.vertex_values indices = np.array(self._slice_indices) not_disp = list(self._dims_not_displayed) disp = list(self._dims_displayed) self._data_view = self.vertices[:, disp] if len(self.vertices) == 0: self._view_faces = np.zeros((0, 3)) elif vertex_ndim > self._ndisplay: vertices = self.vertices[:, not_disp].astype('int') triangles = vertices[self.faces] matches = np.all(triangles == indices[not_disp], axis=(1, 2)) matches = np.where(matches)[0] if len(matches) == 0: self._view_faces = np.zeros((0, 3)) else: self._view_faces = self.faces[matches] else: self._view_faces = self.faces def _update_thumbnail(self): """Update thumbnail with current surface.""" pass def _get_value(self, position): """Value of the data at a position in data coordinates. Parameters ---------- position : tuple Position in data coordinates. Returns ------- value : None Value of the data at the coord. """ return None